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1. Abstract

Research on the interplay between different dynam- ics of epidemic 
spreading on multiplex networks has attracted considerable attention in 
recent years. When disease begins to spread publicly, people can obtain 
information in advance and take measures to prevent infection. Two 
actions performed by those who obtain disease information are (1) taking 
precautionary measures, such as wearing masks, to reduce infection 
probability and (2) rewiring connections from infected neighbors to 
other susceptible ones, that is, the target reconnection. Which of these 
two measures is better? In this study, we propose two information-
driven adaptive models to investigate the interplay between epidemic 
and information spread on duplex networks, where the disease itself and 
information about it can evolve simultaneously. Monte Carlo simulations 
indicate interesting conclusions. Compared with no information-driven 
spreading process, both adaptive processes based on information-driven 
not only can slow down the speed of epidemic spread but can also 
diminish the epidemic prevalence at the final state. Furthermore, the 

target reconnection is more effective in restraining the epidemic spread 
than the reduction of infection probability. The target reconnection can 
help end the epidemic but reduction of infection probability cannot. 
In other words, social isolation measures have better inhibitory effects 
than wearing masks and taking other precautionary measures to improve 
individual immunity. Finally, the target reconnection on duplex containing 
two random networks displays a better effect of restraining the epidemic 
spread than that on the duplex containing two small- world networks.
Index Terms—Information-driven duplex networks; Epidemic dynamics; 
Adaptive process; Monte Carlo Simulations

2. Introduction

The spreading dynamic process that takes place on complex networks 
has attracted great attention for a long time [1–4]. Many studies initially 
focused on the spreading dynamic in isolated networks, such as the spread 
of computer viruses and sexually transmitted diseases on scale-free 
networks [5–8], and the diffusion of various types of information such 
as health behavior [9], exercise contagion [10], and online innovation 
[11]. However, many of these related studies have investigated the 
spreading dynamic independently in a single network. In the real world, 
many networks are interconnected with others and form components 
of larger, complex systems. For instance, in a social system, a group of 
individuals interact with each other through different modes: an individual 
interacts with Xiang Wei, Hongxiao Wang,Shuai Liu, Riu Li, Bo Yang 
and Zhiyong Li are with the School of Engineering, Honghe University, 
Yunan 661100, China. Junchan Zhao is with the School of Mathematics 
and Statistics, Hunan University of Technology and Business, Changsha, 
China. others through online social systems (such as Facebook and others) 
and physical contact systems (such as colleague cir- cles). Furthermore, 
diseases that spread in physical contact networks interact with the 
corresponding disease information diffusion in online networks. Thus, the 
spread of disease information may play an important role in controlling 
the epidemic. Therefore, establishing models and measuring the impact of 
information spread in complex systems has become an important research 
issue.

Many studies analyze dynamic processes that occur in interacting 
networks. Lee et al. [12] proposed a mathematical framework for 
describing an interactive network consisting of a set of coupled network 
layers with different and specific characteristics. Subsequently, many 
related topics, such as dif- fusion and synchronization [13–16], growing 
models [17, 18], cascades [19], evolutionary games [20, 21], among many 
others, are investigated on interacting networks or multiplex networks. 
Two competitive viruses were investigated in two- layer networks by using 
the bond percolation analysis [22]. A study on bisexual men in the United 
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States showed that they were the medium of connecting pathogens from a 
network of heterosexual men with that of homosexual men [23, 24]. The 
susceptible infected refractory (SIR) process was studied on interacting 
networks [25] and revealed that epidemics spread between network 
layers at a threshold of βc, below which the disease does not spread. 
The expressions of the epidem- ic threshold was developed to analyze 
the time evolution with respect to the changes of various parameters 
[26]. A synergistic behavior spreading model on two-layer networks was 
proposed [27], the results showed that the synergistic interactions can 
greatly promote the spread in both layers. Furthermore, some models are 
proposed to investigate the interplay between epidemic and information 
spread (IEIS) on multilayer networks. Epidemic spread and information 
spread were analyzed through a microscopic Markov chain [28], which 
revealed that information spread can prevent infec- tion. The simulations 
also revealed that information spread can effectively raise the epidemic 
threshold [29]. A local awareness-controlled contagion spread model was 
proposed on multiplex networks [30]. 

Through numerical simulations, the emergence of a threshold phase 
transition with the local awareness ratio was revealed. The interplay 
between risk perception and epidemic spreading on multiplex networks 
was investigated [31], which showed that the similarity between the 
information and real networks determined the possibility of stopping the 
infection. The epidemic threshold for IEIS model is derived [32], showing 
that the epidemic threshold depends on both the network structure and 
dynamics of information spreading in social networks. The individual 
behavior status was introduced for the IEIS model in which each individual 
can change their behavior toward contact with the infection or information 
source [33], this model displayed the decrease of the individual behavior 
rate leading to the reduction of disease spread and increasing the threshold. 
Based on the level of prevention based on individual heterogeneity [34], 
altruistic behavior of infected individuals can effectively inhibit the spread 
of epidemics. Most of the aforementioned studies on the diffusion dynam- 
ics of this complex interaction are based on static networks. However, 
when individuals are aware of the disease, they sometimes cut off contact 
with infected persons, resulting in changes of the network structure. 
Currently, researchers pay more attention to the IEIS model on adaptive 
networks. Many studies have shown that separating the susceptible 
individuals from adaptive behavior is an effective strategy to reduce the 
interaction between susceptible and infected (SI) persons, and also hinder 
the disease outbreak [35, 36]. 

A multiplex network with two layers is built [37]in which the information 
spreading layer is a time-varying network. Compared with Monte Carlo 
simulations, the multiplex network showed higher prediction accuracy 
for epidemic threshold. A concrete interplay model was proposed to 
investigate the interplay between epidemic spread and adaptive behavior 
in populations. Furthermore, the model revealed that the synchronous 
adaptive behavior of individuals has a greater impact on the epidemic 
thresholds and prevalence than asynchronous adaptive behavior [38]. The 
results showed that the adaptive process could not only slow down the 
spread of the epidemic but also significantly reduce the final epidemic. 

In fact, when people obtain disease information from their friends or the 
media, they take adaptive behavior of preventive measures such as reducing 
infection probability or cutting off contact with infected individuals from 
being infected. In this study, we investigate the IEIS model in multiplex 
networks on the same population. The mean-field theoretical analysis and 
pairwise approach are used to model the two information-driven adaptive 
behaviors, and corresponding Monte Carlo simulation results revealed 
that human adaptive behaviors can have beneficial effects on the spread 
of the disease. The rest of this paper is organized as follows. The models 
based on the mean-field and pairwise methods are proposed in section 
II. Then, the Monte Carlo simulations are used to show the effects of the 
interactions between two spreading processes in section III. Finally, some 
discussions and conclusions are provided in section IV.

3. Model

3.1. Model description
The multiplex networks with two-layer homogeneous com- plex networks 
named A and B have the same size with differ- ent intra-layer connectivity, 
as shown in Fig. 1. In the disease layer, the dynamics of disease spread 
satisfies susceptible- infected-susceptible (SIS) processes. Although 
people contract an infection in the disease layer, they can obtain disease 
infor- mation in advance. 

Fig. 1: A duplex networks model. Dashed and solid lines represent 
interlayer and intralayer links, respectively.

The dynamic of information spreading in the information layer is 
an unknown-known-unknown process. When the individuals have 
information on the epidemics, the individuals’ states are known (A). 
Conversely, the individuals’ states are unknown (U). The known 
individuals reduce the risk of infection, while the unknown ones have no 
information on how to prevent infection. Based on the model described, 
the spreading process is in accordance with the following rules:
(i)	 Information spreading in information layer. Information can come 

from two communication sources: known neighbors or individuals 
who are already infected and obtain information automatically. The 
unknown individuals can obtain informa-

	 tion from known neighbors with probability β1, while the known 
individuals can forget the information with probability µ1.
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(ii)	 Disease spreading in disease layer. Unknown susceptible individuals 
S− are infected by the infected neighbors with probability β2, while 
the infected individuals (I) recover with probability µ2. 

Due to the impact of information spreading, known susceptible individuals 
S+ can use two adaptive meth- ods to prevent infection. One is to reduce 
the probability of being infected with parameter σβ2(σ < 1), as shown 
in the left panel of Fig. 2. The other is cutting off a certain number of 
connections with the infected ones, and then reconnecting to the same 
number of susceptible individuals in the disease layer, as shown in the 
right panel of Fig. 2. Therefore, the disease layer for physical contact is a 
time-varying network generated by the information-driven process, while 
the information layer for the virtual contact is a static network.

Fig. 2: The individuals adaptive behaviors toward reduction of infection

d[A]
= β [U ][A] − µ [A] + [A] : ([S] + [I]) − [A]),11+dtd [U ]
= µ1A − β1[U ][A], dtd[S−]
= µ [S] + µ [I] − β [S] [S] − β [S] [I],1  +2 dt 1  −  +2  −d[S+] 
= −µ [S ] + β [S ][S ] − β [S1  −  +2  +] [I] + ([S+]  [A] − [S+]),dtd [I]
= −µ2I + β2[S−][I] + β2[S+] [I] dtd [II] dt 
= β2[S−I]([S−I] [S−] + 1) + β2[S+I] ([S+I] [S+] + 1) − 2µ2[II], d[S−S−] 
= µ [S S ] + µ [S I] − 2β [S S ] − 2β [S S ] dt
 
probability (left) and target reconnection (right). Red solid line on the left
 [S−S−][S−S+] [S−S−][S−I]  panel represents aware susceptible individuals 
who reduce the probability of being infected with the parameter σβ (σ < 
1). Dashed red line represents −β1 [S− — β2] , [S−] 2 aware susceptible 
individuals cutting off a certain number of connections with the infected 
ones and green solid line represents those who reconnect to the d[S+S+] 
dt = β2[S−S+] ([S−S+] [S−] + 1) + ω [S+I] − 2µ1[S+][S+] 2 same number 
of susceptible individuals on the right panel. −β2[S+ [S+I] S+](+ 1) + 
β1[S−S+ [S+] [S−S+] ](+ 1) − β2 [S−] [S+S+][S+I] [S+] d[S+I] = −ω[S
dtI] + β1[S−I] + 2β2[S+S+] + β2 [S−S+][S−I] [S−] (2) d[A] +β2 [S+S+]
[S+I] [S+] + β1 [S−I][S−S+] [S−] — β2[S+I]( [S+I] [S+]+ 1),
 = β1(k)[U ][A] + (1 − µ1)[A]([A] = [S+] + [I]), d[S−I]  µ [S I] + β [S S ] 
+ β [S−S−][S−I] β [S−S+][S+I] dt dt 1  +2  − +2 [S−] 2 [S+] d [I]
= β2 (k) [S−][I] + σβ2 (k) [S+][I] + (1 − µ2)I (1) dt +2β [S S ] − β [S I]( 
[S−I] + 1) − β [S−] [S−I][S−S+] [S−] d[S−] d[S−S+] ω
=   [SI] + 2µ [S S] + 2λ [S S] − α [S S ] − β S−S+][S+I] dt	
= µ1[S+] + µ2I − β2 (k) [S−][I] − β1 (k) [S−][S+], + dt 21  + + 1  − − 1  

− +2 [S+] d[S+] 
= β (k) [S] [S] + β (k) [S] [I] − σβ (k) [S] [I], +β1 [S−S−][S−S+] − β [S−] 
[S−S+][S−I] − β [S  S  ] ([S+] [S−S+] + 1), [S−] dt 1 -µ1[S+], − +2 −2+
where the first to the fifth line has the same definition (3)
 
where the first line of Eq. (1) represent the information spreading dynamic 
in the information network, and the other lines of Eq. (1) represent the 
disease spreading dynamic in the disease network. Specifically, in the first 
line of Eq. (1), as the lines in Eq. (1). In the first line, the third term on 
the right side stands for the known susceptible individuals, which include 
those who are already infected and obtain information automatically. The 
adaptive process can be de-scribed by the last terms of d[II] , d[S−S−] , 
d[S+S+] , d[S−I] , the first term on the right side is the probability that 
unaware d[S+I] and d[S−S+] dt dt dt dt individuals [U ] and those infected 
[A] by at least a aware dt dt in the pairwise approach. The pairwise

3.2. Dynamic Model
According to the rules in II-A, the dynamic processes of information and 
epidemic spreading are theoretically analyzed in this section. In particular, 
for the two individuals adaptive behaviors, the mean-field and pairwise 
analyses were adopted in the model. X is set as a state variable, so [X] 
represents the expected value of the individual in state X. The average 
degree of each layer is (k). According to the reduction of infection 
probability to prevent infection with the classical mean-field approach, 
one can obtain prevent infection with the pairwise approach, one can 
obtain neighbor, and the second term stands for the probability that aware 
individuals does not recover. In the second line, the first term on the right 
side stands for the probability that unaware susceptible individuals [S−] 
who are infected [I] by at least one infected neighbor, the second term 
stands for aware susceptible individuals [S+] who are infected [I] by at 
least one infected neighbor, and the third term stands for the infected 
individuals who do not recover. In the third line, the first and second terms 
on the right side stand for unaware susceptible individuals [S−] who 
recover from [S+] and [I], respectively. In the fourth line, the first and 
second terms on the right side stand for unaware susceptible individuals 
[S−] who are infected by at least a known neighbor (including known and 
infected individuals). 

The third term stands for known susceptible individuals [S+] who are 
infected by at least one infected neighbor, and the fourth term stands for 
known susceptible individuals [S+] who recover to [S−]. Comparatively, 
let AB be the link, and the state of two con- necting nodes are A and B. 
[S−S+] represents the expected number of links connecting a unknown 
susceptible node to a known susceptible node. According to cutting off 
[S+I] link to analysis is based on a well-known closure approximation 
given by [ABC] = [AB][BC] with the assumption that the degree of each 
individual obeys Poisson-distribution [39]. In general, obtaining exact 
solutions to such complex differential equations in Eq. (2) may be difficult; 
thus, we show the Monte Carlo numerical results of the equations instead 
of the theoretical analysis in the following section.
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3.3. Monte Carlo Simulations and Analysis
To obtain a clear insight into the interplay between infor- mation diffusion 
and epidemic spreading on top of multiplex networks, we consider the 
duplex networks containing two homogeneous networks. The sizes 
of each layer N are 2000, 3000, 4000 and 5000 respectively, and the 
average degrees k are 100, 150, 200 and 250 respectively. The connection 
probability of links on each layer is 0.05. We perform our models with the 
following two topologies:
1.	 ER-ER duplex: Each layer is formed independently by the random 

network generation algorithm proposed by Erdo¨s and Re´nyi [40].
2.	 WS-WS duplex: Each layer is formed independently by the small-

world networks generating algorithm proposed by Watts and Strogatz 
[41]. Specifically, starting from a ring, one end of each link is rewired 
with a probability of 0.3 to connect the other node randomly selected 
from the network.

A. Simulation with adaptive processes
Monte Carlo simulations for no information-driven and information-
driven(Eqs.(1) and (2)) spreading processes are conducted to display the 
evolutionary effects. The initial fraction of infected nodes is set to 0.01, 
the values of spreading probability are β1 = 0.2 and β2 = 0.2, and the 
values of recovering probability are µ1 = 0.5 and µ2 = 0.5. When people 
obtain the disease information from the information network and take two 
preventive measures to prevent being infected. One measure is reducing 
the infection rate and the other is target reconnection. We reduce the 
infection rate β2 by the factor σ to reduce the infection rate, and we set σ = 
0.5. For the target reconnection, the reconnection rate is ω = 0.001, which 
means that the known susceptible individuals S+ cuts off Nω connections 
with the infected individuals for target reconnection. The Monte Carlo 
simulation results of infection prevalence ρ evolving with time T for three 
spreading processes were shown for the ER-ER and WS-WS duplexes, 
respectively. The comparison of the average infection prevalence ρ for 
the mean-field and pairwise approaches with the corresponding no 
information-driven model are presented in this section. Figs. 3, 4, 5 and 6 
display the simulation results of infection prevalence ρ evolving with time 
T for the ER-ER duplex with different N. 

Fig. 3: (Color online). The Monte Carlo simulation result of infection 
prevalence ρ evolving with time T for no information-driven model (left), 
reduction of infection probability model (middle), and target reconnection 

model (right) on ER-ER duplex (N=2000). The colored area shows the 
number distribution of ρ based on 100 realizations and the lines show the 
average of the 100 realizations.

Fig. 4: (Color online). The Monte Carlo simulation result of infection 
prevalence ρ evolving with time T for no information-driven model (left), 
reduction of infection probability model (middle), and target reconnection 
model (right) on ER-ER duplex (N=3000). The colored area shows the 
number distribution of ρ based on 100 realizations and the lines show the 
average of the 100 realizations.

Fig. 5: The Monte Carlo simulation result of infection prevalence ρ 
evolving with time T for no information-driven model (left), reduction 
of infection probability model (middle), and target reconnection model 
(right) on ER-ER duplex (N=4000). The colored area shows the number 
distribution of ρ based on 100 realizations and the lines show the average 
of the 100 realizations.

Fig. 6: The Monte Carlo simulation result of infections prevalence ρ 
evolving with time T for no information-driven model (left), reduction 
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of infection probability model (middle), and target reconnection model 
(right) on ER-ER duplex (N=5000). The colored area shows the number 
distribution of ρ based on 100 realizations and the lines show the average 
of the 100 realizations.

The colored area shows the number distribution of ρ and the lines show the 
average infection prevalence ρ based on 100 realizations. Fig. 7 displays 
comparison of the average infection prevalence for three models with 
different N. Simultaneously, Figs. 8, 9, 10 and 11 show the simulation 
results of infections prevalence ρ evolving with time T for the WS-WS 
duplex with different N , Fig. 12 displays comparison of the average 
infection prevalence for three models with different N . Figs. 7 and 12 
show the results compared with the no information-driven process. Both 
adaptive processes not only slow down the speed of epidemic spreading 
but can also decrease the infection prevalence at the final state for both 
the ER-ER and WS-WS duplexes. Furthermore, this observation indicates 
that the adaptive process of the target reconnection results in better 
measures than the reduction of the infection rate based on the parameters 
set in this study.

Fig. 7: (Color online). The Monte Carlo simulation results of average 
infection prevalence of ρ 100 realizations evolving with time T for three 
models with N=2000, 3000, 4000 and 5000 on ER-ER duplex

 

fig. 8: The Monte Carlo simulation result of infection prevalence ρ 
evolving with time T for no information-driven model (left), reduction 

of infection probability model (middle) and target reconnection model 
(right) on WS-WS duplex (N=2000). The colored area shows the number 
distribution of ρ based on 100 realizations and the lines show the average 
of the 100 realizations.

Fig. 9: The Monte Carlo simulation result of infection prevalence ρ 
evolving with time T for no information-driven model (left), reduction 
of infection probability model (middle) and target reconnection model 
(right) on WS-WS duplex (N=3000). The colored area shows the number 
distribution of ρ based on 100 realizations and the lines show the average 
of the 100 realizations.

Fig. 10: The Monte Carlo simulation result of infection prevalence ρ 
evolving with time T for no information-driven model (left), reduction 
of infection probability model (middle) and target reconnection model 
(right) on WS-WS duplex (N=4000). The colored area shows the number 
distribution of ρ based on 100 realizations and the lines show the average 
of the 100 realizations.

Fig. 11: The Monte Carlo simulation result of infection prevalence ρ 
evolving with time T for no information-driven model (left), reduction 
of infection probability model (middle) and target reconnection model 
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(right) on WS-WS duplex (N=5000). The colored area shows the number 
distribution of ρ based on 100 realizations and the lines show the average 
of the 100 realizations.

Fig. 12: (Color online). The Monte Carlo simulation results of average 
infection prevalence ρ of 100 realizations evolving with time T for three 
models with N=2000, 3000, 4000 and 5000 on WS-WS duplexes.

B. Sensitivity analysis of parameters
 
Finally, the Monte Carlo simulations are used for sensitivity analysis of 
the parameters. Considering the ER-ER and WS- WS duplexes with N = 
3000, the comparison of ρ for different values of reducing the infection 
rate σ and target reconnection are shown in Figs. 13 and 14. Fig. 13 
presents the average final state with different parameters for the WS 
WS duplex. We can obtain similar observations from Figs. 7 and 12 for 
the ER-ER and WS-WS duplexes. The left panel reveals that a smaller 
reduction of spreading probability σ leads to better suppression of virus 
transmission. The right panel reveals that more reconnections lead to better 
suppression of virus transmission. Fig. 14 displays the same conclusion as 
in Fig. 14 for ER-ER duplex. The same observations for different models 
and parameters are obtained, which reveal that the conclusions are not 
sensitive to the parameters. Note that the target reconnection can make the 
epidemic disappear but reduction of infection probability cannot do so on 
the ER- ER duplex. The target reconnection method displays a better effect 
of restraining the spread of the epidemics spreading for the ER-ER duplex 
than the WS-WS duplex. The right panel of Fig. 14 shows that when the 
reconnections are m = 4, the infections prevalence ρs toward zero evolves 
with time T in some simulations for the ER-ER duplex. This condition 
leads to a low average of infection prevalence ρs. However, under the 
condition of setting the same parameters, as shown in the right panel of 
Fig. 13, the infection prevalence ρs no towards 0 evolving with time T in 
the simulations for the WS-WS duplex, which causes the evolution trend 
of ρ to be the same as that when m = 3. 
 

Fig. 13:  (Color online). Comparison of infection prevalence ρ evolving 
with time T for reducing infection probability with different values 
of σ (left) and target reconnection for different values of m (right) on 
information-driven process.

Fig. 14: (Color online). Comparison of infection prevalence ρ evolving 
with time T for reducing infection probability with different values 
of σ (left) and target reconnection for different values of m (right) on 
information-driven process.

   

Fig. 15:  (Color online). Degree distribution of original disease network 
and that after the adaptive process of the target reconnection. The original 
disease network is a random network(left) and the original network is a 
small- world(right).

The difference might be due to the network structure variation in the 
adaptive process of the target reconnection method. When the degree 
distribution of the original net- work is approximate to the Poisson-
distribution with mean degree of approximately 150, the green spot marker 
on the left panel of Fig. 15 shows the degree distribution of the original 
random network, and that on the left panel shows the degree distribution 
of original small-world networks. After their connections are rewired, 
the degree distribution of the two kinds of networks at the final state 
deviates from the original distribution. For the ER-ER duplex, the degree 
distribution deviates slightly from the original distribution. However, 
for the WS-WS duplex, the degree distribution deviates more from the 
original distribution. The reason is that when the initial network is random 
network, many long-range connections exist in the random network, so 
that the virus can spread evenly to the entire network, and the information-
obtained nodes are evenly distributed. The reason is that when the initial 
network is a random network with many long-range links, the virus can 
evenly spread to the entire network, and the nodes that obtain information 
are evenly distributed. When the nodes that obtain the information are 
reconnected with the broken edges, they can evenly select any healthy 
nodes to reconnect. When the initial network is a small- world, where 
only a small number of long-range connections exist, the virus can only 
spread along the neighbors of the infected node, while the healthy node 
far from the infected node obtains more connection opportunities, thereby 
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forming a larger degree of nodes. The existence of these larger degree of 
nodes accelerate the spread of the virus when these nodes are infected. 
Therefore, for the adaptive process of reconnection, the initial network is 
a random network, that can obtain an improved suppression effect than the 
initial network, which is a small-world.

4. Conclusions

The interplay between the spread of disease and the diffu- sion of 
information was investigated. Two information-driven adaptive models 
were proposed to reveal the interplay between the epidemic and 
information spread on duplex networks. Analogous conclusions were 
obtained for the duplex networks formed by the random and small-world 
networks. Monte Carlo simulations verify that both the adaptive process 
based on the information-driven models not only can slow down the speed 
of epidemic spreading, but can also diminish the epidemic prevalence at 
the final state. Furthermore, the target reconnection method displays a 
better effect of restraining the epidemic spread than the method of reducing 
infection probability because the target reconnection can make the 
epidemic disappear but the method of reducing the infection probability 
cannot. Finally, the target reconnection on the duplex containing two 
random networks was more effective in restraining the epidemic spread 
than that on the duplex containing two small-world networks. The reason 
was that the target reconnection of the WS-WS duplex led to an increase 
in the number of nodes with high degree, thereby accelerating the spread 
of the virus when the nodes were infected. This work may shed light on 
understanding that which method does human should choose to suppress 
the spread of disease.
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